从 $1$ ∼ $n$ 这 $n$ 个整数中随机选出 $m$ 个,输出所有可能的选择方案。

输入格式

两个整数 $n, m$ ,在同一行用空格隔开。

输出格式

按照从小到大的顺序输出所有方案,每行 $1$ 个。

首先,同一行内的数升序排列,相邻两个数用一个空格隔开。

其次,对于两个不同的行,对应下标的数一一比较,字典序较小的排在前面(例如 $1 3 5 7$ 排在 $1 3 6 8$ 前面)。

数据范围
$n > 0$,
$0 ≤ m ≤ n$,
$n + (n − m) ≤ 25$
输入样例:

5 3

输出样例:

1 2 3 
1 2 4 
1 2 5 
1 3 4 
1 3 5 
1 4 5 
2 3 4 
2 3 5 
2 4 5 
3 4 5 

思考题:如果要求使用非递归方法,该怎么做呢?


题解

#include<iostream>
using namespace std;
int n, m;

void dfs(int u, int sum, int state) {
    if(sum + n-u < m) return;
    if(sum == m) {
        for(int i = 0; i < n; i++) {
            if(state >> i & 1) {
                cout << i+1 << " ";
            }
        }
        puts("");
        return;
    }
    if(u == n) return;
    dfs(u+1, sum+1, state | 1 << u);
    dfs(u+1, sum, state);
    
}

int main(){
    cin >> n >> m;
    dfs(0, 0, 0);
    return 0;
}
Last modification:March 24, 2022
如果觉得我的文章对你有用,请随意赞赏